

Physics Theory of Creation

Earth ~ 4 billion years ago

Origin of Life – Early Earth

Origin of Life – Early Earth

Origin of Life – Organic Soup

Does everyone know gene expression?

Origin of Life – Organic Soup

Origin of Life – RNA World

Self Replication RNA

Lipid Vesicles

origins of Life – Bacterial world

Origins of Life - First Ecosystems

origins of Life – Modern Analogues

Microbial mats relegated to extreme environments

Hot springs, salty lakes, deserts

No or low grazing

Life's Greatest Hits

The Road to Darwinian Evolution

Aristotle (384-322 B.C.) Spontaneous generation

John Ray (1627-1705 A.D.)

Categorization of genera and species – inference that similar organisms are connected in some fashion

Carl Linnaeus (1707-1778 A.D.)

Generation of new life by creating hybrids – implied inheritance

Jean-Baptiste Lamarck (1744 – 1829 A.D.)

Suggested that species evolve. Modifications made over one lifetime are pasted to descendants

Gregor Mendel (1822 – 1884 A.D.)

Inheritance and inheritance pattern of traits -> genes

Louis Pasteur (1822 – 1895 A.D.) Finally disproved spontaneous generation of life

Spontaneous Generation

Aristotle -Animated life comes from inanimate things

The Road to Darwinian Evolution

Aristotle (384-322 B.C.) Spontaneous generation

John Ray (1627-1705 A.D.)

Categorization of genera and species – inference that similar organisms are connected in some fashion

Carl Linnaeus (1707-1778 A.D.)

Generation of new life by creating hybrids – implied inheritance

Jean-Baptiste Lamarck (1744 – 1829 A.D.)

Suggested that species evolve. Modifications made over one lifetime are pasted to descendants

Gregor Mendel (1822 – 1884 A.D.)

Inheritance and inheritance pattern of traits -> genes

Louis Pasteur (1822 – 1895 A.D.) Finally disproved spontaneous generation of life

Charles Darwin (1809-1882 A.D.)

5 year boat tour

Common ancestor

Evolution of species driven by natural selection

The change in inherited traits of a population of organisms over successive generations

Mutation – Genetic diversity – Inheritance – Natural Selection

Modification of the genetic code

Silent - not transcribed or wobble region

Expressed – leads to a change in protein function and thus physical trait

5' NASA is hiding aliens on this base.

NASA is hyding aliens on this base.

Silent point mutation

NASA as hiding aliens on this base.

Deleterious point mutation

NASA ip shidin galien so nthi sbase.

Deleterious point mutation with a frame shift

NASA is hiding olives on this base.

Multiple mutations leading to new function

Most mutations are deleterious Loss of function Death

Rates of Mutation

Humans:

2.5 x 10⁻⁸ mutations/nucleotide/generation 175 mutations per generation 3 million base pairs in human genome

Mutation rates can increase when organisms are stressed

Accumulation of slightly deleterious mutations

Purged through sexual reproduction

Most mutations are deleterious Loss of function Death

Rates of Mutation

Humans:

2.5 x 10⁻⁸ mutations/nucleotide/generation 175 mutations per generation 3 million base pairs in human genome

Mutation rates can increase when organisms are stressed

Accumulation of slightly deleterious mutations

Purged through sexual reproduction

UV radiation

X-rays

Gamma rays

Ethidium Bromide

Air bags (Sodium azide)

Plastic (Benzene)

Viruses

Transcription errors

Hot Dogs (Nitrates)

Cooked food (heterocyclic amines)

Nalgene water bottles (bisphenol-A)

Smog

Cigarettes (benzo[a] pyrene)

Sun

Air

Food

People

Gene Duplication

duplication
After
duplication

Major role in evolution

Greater gene expression – sometimes good, sometimes bad

Neutral – gene can accumulate mutations leading to a new function

- 1) Digestive enzyme in ice fish
- 2) Myoglobin and Haemoglobin

Genome duplication

Two (or more) copies of the same gene but on separate chromosomes

Increases diversity

Limits the effects of deleterious mutations – masked by gene copy

Polyploidy:
Triploids – Banana
Tetraploids – Tobacco
Hexaploid – Kiwi fruit
Octaploid - Strawberry

Selection

Evolutionary pressure that works over multiple generations to cause certain traits to become more prominent than others in a population

Selection

- •Environmental Selection Physical pressures from the environment (temperature, predation, water availability)
- Sexual Selection mate selection
- Artificial Selection Human interests

Evironmental Selection

Environmental Stress

Temperature
Food availability
Water availability
Sun availability

Predation or Grazing

Any environmental factor that prevents you from procreating

Global Climate Change

Rates of environmental change vs.

Rates of evolution

Evolution:
Generation time
Genetic diversity
Expressed diversity (population size, clutch size)

Acclimation:
Dispersion
Mobility

Sexual Selection

Sexual Selection

Sexual Selection

Physical modifications to attract mates

Physical modifications to compete for mates

Behavioral modifications to attract mates

INCREASE VISIBILITY TO PREDATORS

Selective Breeding

Natural selection is circumvented through human intervention

- 1. Humans breed organisms with traits beneficial to our needs
- 2. Humans prevent organisms of the same species with non-ideal traits from breeding
- 3. Modify environment to sustain new organism -remove predation, competition, provide resources
- 4. Called "Domestication"

Selective Breeding

Corn Teosinte.

Selective Breeding

Genetic Modification

Transfer genes between organisms that can not be breed through conventional means

Gene addition or gene deletion

EnviroPig

GFP Mice

Square Tomato

ereating New Life from Scratch

Create designer genomes and thus designer life to perform specific tasks

May 2010

Artificially generated a bacterial genome and integrated it into a bacterial host cell

Questions:

Is this different than selective breeding?

Is it moral to patent life?

What are the implications?

As we move into space and to other planet we will take life with us.

How will life evolve in these new environments?

Low or no gravity

Cosmic radiation

How will human pathogens evolve?

